-
Machine Learning Explainability Via Microaggregation and Shallow Decision Trees
Artificial intelligence (AI) is being deployed in missions that are increasingly critical for human life. To build trust in AI and avoid an algorithm-based authoritarian... -
Explanation in artificial intelligence. Insights from the social sciences
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to provide more transparency to their algorithms.... -
Machine Learning Explainability Through Comprehensible Decision Trees
The role of decisions made by machine learning algorithms in our lives is ever increasing. In reaction to this phenomenon, the European General Data Protection Regulation... -
GLocalX - Explaining in a Local to Global setting
GLocalX is a model-agnostic Local to Global explanation algorithm. Given a set of local explanations expressed in the form of decision rules, and a black-box model to explain,...